|
PUL0559 |
|
28329766, Nature. 2017 Apr 6;544(7648):65-70. doi: 10.1038/nature21725. Epub 2017 Mar 22. |
| Complex pectin metabolism by gut bacteria reveals novel catalytic functions. |
| Ndeh D, Rogowski A, Cartmell A, Luis AS, Basle A, Gray J, Venditto I, Briggs J, Zhang X, Labourel A, Terrapon N, Buffetto F, Nepogodiev S, Xiao Y, Field RA, Zhu Y, O'Neil MA, Urbanowicz BR, York WS, Davies GJ, Abbott DW, Ralet MC, Martens EC, Henrissat B, Gilbert HJ |
| The metabolism of carbohydrate polymers drives microbial diversity in the human gut microbiota. It is unclear, however, whether bacterial consortia or single organisms are required to depolymerize highly complex glycans. Here we show that the gut bacterium Bacteroides thetaiotaomicron uses the most structurally complex glycan known: the plant pectic polysaccharide rhamnogalacturonan-II, cleaving all but 1 of its 21 distinct glycosidic linkages. The deconstruction of rhamnogalacturonan-II side chains and backbone are coordinated to overcome steric constraints, and the degradation involves previously undiscovered enzyme families and catalytic activities. The degradation system informs revision of the current structural model of rhamnogalacturonan-II and highlights how individual gut bacteria orchestrate manifold enzymes to metabolize the most challenging glycan in the human diet. |
|
18996345, Cell Host Microbe. 2008 Nov 13;4(5):447-57. doi: 10.1016/j.chom.2008.09.007. |
| Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. |
| Martens EC, Chiang HC, Gordon JI |
| The distal human gut is a microbial bioreactor that digests complex carbohydrates. The strategies evolved by gut microbes to sense and process diverse glycans have important implications for the assembly and operation of this ecosystem. The human gut-derived bacterium Bacteroides thetaiotaomicron forages on both host and dietary glycans. Its ability to target these substrates resides in 88 polysaccharide utilization loci (PULs), encompassing 18% of its genome. Whole genome transcriptional profiling and genetic tests were used to define the mechanisms underlying host glycan foraging in vivo and in vitro. PULs that target all major classes of host glycans were identified. However, mucin O-glycans are the principal host substrate foraged in vivo. Simultaneous deletion of five genes encoding ECF-sigma transcription factors, which activate mucin O-glycan utilization, produces defects in bacterial persistence in the gut and in mother-to-offspring transmission. Thus, PUL-mediated glycan catabolism is an important component in gut colonization and may impact microbiota ecology. |
|
22205877, PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20. |
| Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. |
| Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M, McNulty NP, Abbott DW, Henrissat B, Gilbert HJ, Bolam DN, Gordon JI |
| Symbiotic bacteria inhabiting the human gut have evolved under intense pressure to utilize complex carbohydrates, primarily plant cell wall glycans in our diets. These polysaccharides are not digested by human enzymes, but are processed to absorbable short chain fatty acids by gut bacteria. The Bacteroidetes, one of two dominant bacterial phyla in the adult gut, possess broad glycan-degrading abilities. These species use a series of membrane protein complexes, termed Sus-like systems, for catabolism of many complex carbohydrates. However, the role of these systems in degrading the chemically diverse repertoire of plant cell wall glycans remains unknown. Here we show that two closely related human gut Bacteroides, B. thetaiotaomicron and B. ovatus, are capable of utilizing nearly all of the major plant and host glycans, including rhamnogalacturonan II, a highly complex polymer thought to be recalcitrant to microbial degradation. Transcriptional profiling and gene inactivation experiments revealed the identity and specificity of the polysaccharide utilization loci (PULs) that encode individual Sus-like systems that target various plant polysaccharides. Comparative genomic analysis indicated that B. ovatus possesses several unique PULs that enable degradation of hemicellulosic polysaccharides, a phenotype absent from B. thetaiotaomicron. In contrast, the B. thetaiotaomicron genome has been shaped by increased numbers of PULs involved in metabolism of host mucin O-glycans, a phenotype that is undetectable in B. ovatus. Binding studies of the purified sensor domains of PUL-associated hybrid two-component systems in conjunction with transcriptional analyses demonstrate that complex oligosaccharides provide the regulatory cues that induce PUL activation and that each PUL is highly specific for a defined cell wall polymer. These results provide a view of how these species have diverged into different carbohydrate niches by evolving genes that target unique suites of available polysaccharides, a theme that likely applies to disparate bacteria from the gut and other habitats. |
|
16968696, J Biol Chem. 2006 Nov 24;281(47):36269-79. doi: 10.1074/jbc.M606509200. Epub 2006 Sep 12. |
| Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. |
| Bjursell MK, Martens EC, Gordon JI |
| The adult human gut microbiota is dominated by two divisions of Bacteria, the Bacteroidetes and the Firmicutes. Assembly of this community begins at birth through processes that remain largely undefined. In this report, we examine the adaptations of Bacteroides thetaiotaomicron, a prominent member of the adult distal intestinal microbiota, during the suckling and weaning periods. Germ-free NMRI mice were colonized at birth from their gnotobiotic mothers, who harbored this anaerobic Gram-negative saccharolytic bacterium. B. thetaiotaomicron was then harvested from the ceca of these hosts during the suckling period (postnatal day 17) and after weaning (postnatal day 30). Whole genome transcriptional profiles were obtained at these two time points using custom B. thetaiotaomicron GeneChips. Transcriptome-based in silico reconstructions of bacterial metabolism and gas chromatography-mass spectrometry and biochemical assays of carbohydrate utilization in vivo indicated that in the suckling gut B. thetaiotaomicron prefers host-derived polysaccharides, as well as mono- and oligosaccharides present in mother's milk. After weaning, B. thetaiotaomicron expands its metabolism to exploit abundant, plant-derived dietary polysaccharides. The bacterium's responses to postnatal alterations in its nutrient landscape involve expression of gene clusters encoding environmental sensors, outer membrane proteins involved in binding and import of glycans, and glycoside hydrolases. These expression changes are interpreted in light of a phylogenetic analysis that revealed unique expansions of related polysaccharide utilization loci in three human alimentary tract-associated Bacteroidetes, expansions that likely reflect the evolutionary adaptations of these species to different nutrient niches. |